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Abstract 
 
 
 
In this work, we investigated the electronic properties of two dimensional electron gas 
(2DEG) constrained by quantum point contacts (QPCs). We numerically studied the 
equilibration processes in the presence of a magnetic field by solving the three dimensional 
Poisson’s equation self-consistently. We found a strong geometrical and likewise system 
parameter dependency on transport properties. Most interestingly, only by varying the 
magnetic field, one can manipulate the quantum device from non-equilibrium transport to 
equilibrium transport. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Özet 
 
 
 
Bu çalışmada, kuantum nokta kontaklarla (KNK) zorlanan iki boyutlu elektron gazının 
(2BEG) elektronik özellikleri incelenmiştir. Üç boyutlu Poisson denkleminin öz uyumlu 
nümerik çözümü ile bir manyetik alan varlığında dengelenme süreci çalışılmıştır. Elektronik 
taşınma özellikleri üzerinde geometrik özelliklere ve sistem parametrelerine güçlü bir 
bağımlılık bulunmuştur. En ilginç olarak, sadece manyetik alan değiştirilerek, kuantum 
aygıtının dengesiz taşınımdan denge durumundaki taşınıma yönlendirebileceğimizi 
gözlemledik. 
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Chapter 1 
 
Theoretical and Experimental Background 
 
 
 
 
1.1 Introduction 
 
In our new era, the use of knowledge and technology is at a very high level and it increases 
dramatically with time. By the increasing need of use of knowledge and technology, the 
interest on the quantum information processing has been increased a lot. This leads scientists 
and the engineers to investigate the electronic properties of the small-scale electronic devices. 
One of the most interesting and well studied of such devices is the so called quantum point 
contacts (QPCs). Aside from studying fundamentals of charge transport in mesoscopic 
conductors, QPCs can be used as very sensitive charge detectors. In view of quantum 
computation in solid-state systems, QPCs can be used as readout devices for the state of a 
qubit. A qubit or a quantum bit is a unit of quantum information in quantum computing. A 
QPC is simply a narrow constriction between two electrically conducting regions. QPCs are 
constructed on two dimensional electron systems (2DES). Via our current technology, we 
usually construct 2DES at the interface of an heterostructure. QPCs can be constructed either 
by inducing electrostatic potential on the plane of 2DES by depositing gates on the surface of 
the crystal and/or by chemically etching the structure. The small size of the constraint, that is 
in a scale such that quantum mechanical effects can be observed, creates quantized energy 
levels in one dimension (perpendicular to the current direction). Therefore, the charge 
transport takes place depending on whether the energy of the electron coincides with this 
quantized energy levels or not. Ideally, at low bias voltages, if the energy of the electron less 
than the lowest energy level of the constraint, no current can pass through the QPC. 
Otherwise, only a certain integer number of levels are involved, so the current is quantized. 
Some of the details of the QPC will be given in this report. 
 
We said that QPCs can be used as very sensitive charge detectors. Since the conductance 
through the QPC strongly depends on the size of the constriction, any potential fluctuation in 
the vicinity will effect the current through the contact. Single electrons can be detected with 
such a scheme. However, aside from the physical size of the QPC, the perpendicular 
component of the applied magnetic field, B, is another parameter which induces quantization 
on the 2DES. The interesting physics dictated by this quantization is observed as the quantum 
Hall effect. Due to the perpendicular magnetic field, the energy spectrum of the system is 
discrete, like that of a harmonic oscillator. These energy levels are known as the Landau 
levels (LLs) and are given by )2/1(  nE cn  , where n is a positive integer and cyclotron 
energy is defined as meBc /  , where m is the effective mass of the electron.  In the case  
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of electrostatic equilibrium, that is when a fixed electron density is satisfied, the Fermi 
energy, Ef , can either be pinned to one of the LLs, where the system is compressible or can 
fall in between two successive LLs. In the second case, there is no equilibrium, since there are 
no available states at the Ef  for electrons to be redistributed so that the equilibrium can be 
satisfied again, the system is known to be incompressible. Within these incompressible 
regions the resistivity vanishes due to absence of scattering, hence all the applied current is 
confined to these regions.  
 
We studied the transport in 2DES and to be able to control the current (in the future so that to 
use quantum information proccessing), we use the QPC and magnetic field. We tried to figure 
out the equilibration conditions. 
 
In this work, we first give the theoretical and experimental background and then proceed with 
equilibration. In chapter 1, the experimental and theoretical background on electrostatic are 
given. First, in Sec. 1.1, Poisson’s equation that is to be used to get the potential and electron 
distribution profiles of the 2DES, is given. Then the partial differential equations and their 
boundary conditions are given. In Sec. 1.5, some numerical methods to solve differential 
equations are given to understand the working mechanism of the programs that make 
computation numerically. In Sec. 1.6, the program we used that solves the Poisson’s equation 
self-consistently is given. In the last section of chapter 1, a general introduction to QPCs is 
provided and the type that we used (gate defined QPC) is investigated as an example with the 
heterostructure we used and also the results from the Est3D calculations are analyzed. 
Theoretical background on magnetism is given in chapter 2. In chapter 3, equilibrium, non-
equilibrium and equilibration cases are given respectively, and the results that we obtained are 
introduced. The final conclusion section includes a discussion of the findings. 
 
 
1.2  Poisson’s Equation 
 
In solving electrostatic problems, we have a fundamental differential equation that must be 
satisfied by the potential )(rV 

 for given boundary condition(s), which will be discussed in 
this part. 
 
We start by the elementary definition of the Gauss law, using the differential form, 
 

    
0


 E


,      (1.2.1) 

 
where the operator )(r


  acts on the position dependent electric field )(rE 

. We will use E


 

and V  instead of )(rE 
 and )(rV 

 respectively, for convenience in the remaining. Hence, the 
electric field can be written as the gradient of a scalar potential, 
 
    VE 


.      (1.2.2) 
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Combining Eqs.(1.2.1) and (1.2.2), one obtains, 
 

    
0

)(



 V


,   

 
 

    
0

2




 V .      (1.2.3) 

 
This is known as the Poisson’s equation. In the absence of any external charge density, the 
Poisson’s equation reduces to a simpler form, 
 
    02  V ,      (1.2.4) 
 
which is known as Laplace’s equation. 
 
The operator 2  involves differentiation with respect to more than one variable. Hence, 
Poisson’s equation is a partial differential equation that may be solved once it is known that 
the functional dependence of ),,( zyx  and the appropriate boundary conditions. [1] 
 
 
1.3  Partial Differential Equations 
 
There are two or more independent variables in many real physical problems, so the 
corresponding mathematical models involve partial differential equations rather than ordinary 
ones. Partial differential equations are solved generally by separation of variables and the 
replacement of the partial differential equations by a set of ordinary differential equations that 
must be solved subject to a given initial or boundary conditions. The solution of the partial 
differential equation is then expressed as a sum of  the solutions coming from the ordinary 
differential equations, and they are usually infinite series; as Fourier series. [2] 
 
Physical applications often lead to such problems that the value of the dependent variable y , 
or its derivative is specified at two different points; boundary conditions. A differential 
equation with boundary conditions form a two-point boundary value problem. For example 
let’s consider a typical differential equation, 
 
    )()(')('' xgyxqyxpy  ,    (1.3.1) 
 
with the boundary conditions, 
 
    01)( ycy  ,   12 )( ycy  .    (1.3.2) 
 
To be able to solve the boundary value problem (1.3.1), (1.3.2) it is needed to find a function 

)(xy   that satisfies the diferential equation (1.3.1) in the interval 1c < x < 2c  and that takes 
the boundary values (1.3.2) at the end points of the interval. It is common to find a general  
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solution to the differential equation first, then the boundary conditions are imposed to 
determine the values of the arbitrary constants.  
 
One of the most important partial differential equation is the Laplace’s equation. Since, our 
aim is to model electronic transport in two-dimensions we consider, 
 

    02

2

2

2









y
u

x
u

.     (1.3.3) 

 
To uniquely determine the solution of a given differential equation one has to fix the time and 
spatial boundary conditions. If there is no time dependence in the problem, as for Laplace’s or 
Poisson’s equations, there are no initial conditions to be satisfied. As in all differential 
equations, the Laplace equation should also satisfy certain boundary conditions on the 
boundary of a curve or a surface of the region in which the differential equation is wanted to 
be solved. The problem of finding a solution of the Laplace’s equation that considers only the 
boundary values is known as Dirichlet problem, whereas, if the values of the normal 
derivative are prescribed on the boundary, the problem is known as the Neumann problem. 
The conditions of these problems are called Dirichlet boundary conditions and Neumann 
boundary conditions, respectively, and they are illustrated in the following section.  
 
 
1.4  Boundary Conditions 
 
There are three types of boundary conditions commonly encountered in the solutions of  
partial differential equations [3]: 
 
 
Dirichlet boundary conditions: The value of a function is specified on the boundary. By the 
function, it is meant that the potantial, in electrostatics. 
 
Neumann boundary conditions: The normal derivative of a function is specified on the 
boundary. In electrostatics, this would be the normal component of the electric field or 
alternatively the surface charge density. 
 
Cauchy (mixed) boundary conditions: It means Dirichlet plus Neumann boundary 
conditions. The value of a function and its normal derivative are specified at the boundary. In 
electrostatics, this means the potential and the normal component of the electric field. 
 
For example, for Poisson’s equation with a closed surface, both Dirichlet and Neumann 
boundary conditions can lead to a unique, stable solution. Therefore, Cauchy boundary 
conditions can lead to an inconsistency, which one should be aware of and investigate 
carefully the properties of the physical system. [2] 
 
We will be discussing in more detail the Dirichlet and the Neumann boundary conditions in 
the following parts. 
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1.4.1  Dirichlet Boundary Conditions 
 
The Dirichlet boundary condition was named after Johann P. G. L. Dirichlet. For an ordinary 
or a partial differential equation, the Dirichlet boundary conditions specify the values that the 
solution has to satisfy on the boundary of the domain.  
 
For an ordinary differential equation such as: 
 

    bay
dx

yd
2

2

, 

 
on the interval [ 1c , 2c ], the Dirichlet boundary conditions take the form: 
 
    11)( cy , 
    22 )( cy , 
 
where 1  and 2  are given (real) numbers. For a partial differential equation on a domain   
such as: 
 

02  yy , 
 
the Dirichlet boundary condition takes the form: 
 
    )()( xfxy  , 
 
where f  is a known function defined on the boundary  . 
 
 
1.4.2 Neumann Boundary Conditions 
 
The Neumann boundary condition was named after Carl von Neumann. For an ordinary or a 
partial differential equation, the Neumann boundary condition specifies the values that the 
derivative of a solution is to take on the boundary of the domain. 
 
For an ordinary differential equation such as: 
 

    bay
dx

yd
2

2

 

 
on the interval [ 1c , 2c ], the Neumann boundary conditions take the form: 
 

    11)( c
dx
dy

, 
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    22 )( c
dx
dy

, 

 
where 1  and 2  are given numbers. 
 
For a partial differential equation on a domain   such as: 
 
    02  y , 
 
the Neumann boundary condition takes the form: 
 

    )()( xfx
n
y





, 

 
where n  denotes the normal to the boundary   and f  are given scalar functions. The 
normal derivative which is on the left-hand side is defined as: 
 

    )(ˆ)()( xnxyx
n
y



 

. 

 
 
1.5  Numerical Solution Methods for Differential Equations  
 
Numerical solutions of differential equations are quite important in computational physics, 
because it can be said that the study of physics is the study of differential equations, to a large 
extent. In real life, there are nearly no “linear second-order homogeneous differential 
equations with constant coefficients”. However, all the interesting equations are either trivial 
or impossibly difficult to solve analytically. These “difficulties”  can be handled by numerical 
methods. In this chapter, we used references [4, 5, 6, 7, 8], and the lecture notes of Prof. A. 
Hacınlıyan. 
 
Unforunately, there is no way to determine the best method for solving all equations. Each 
equation has a special character. One method can work well for one differential equation 
while it does not for another. In this part, some methods that are shown to be useful to solve a 
differential equation will be given. 
 
 
1.5.1  Euler Methods 
 
Let’s consider the equation, 
 
    ),()(' yxfxy  .     (1.5.1) 
 
It should be noted that if f  is a function of x  alone, it can be solved immediately for y  as 
following, 
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    
x

dxxfxy ')'()( .     (1.5.2) 

 
Since, this is an uninteresting situation, it will be assumed that f  is a function of x  and y . 
Eq.(1.5.1) can be solved by Taylor series. If all the derivatives are known, the solution can be 
constructed from the expansion, 
 

   ...)(''
!2

)(
)(')()()( 0

2
0

000 


 xyxxxyxxxyxy  (1.5.3) 

 
since )(' xy  is known, higher derivatives can be obtained, but a little work is required. The 
second derivative is,  
 

    ),(),()('' yxf
ydx

dyyxf
x

xy







  

               ),(),(),( yxf
y

yxfyxf
x 







 .  (1.5.4) 

 
Clearly this leads to some complicated expressions, and the situation degenerates as it is 
moved to higher derivatives. As a practical matter, the Taylor series solution is not very 
helpful. However, it provides criteria that other methods can be measured. To that end, it is 
written as, 
 

 
















y

yxf
yxf

x
yxfxx

yxfxxyxy
),(

),(
),(

!2
)(

),()()( 00
00

00
2

0
0000   

     ),('''
!3

)( 3
0 yxx 

     (1.5.5) 

 
where )( 00 xyy  . 
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Figure 1.5.1: The simple Euler method. 
 
The original differential equation gives the derivative 'y  at any point; if it is given that the 
value of y  at some point 0x , then the function can be approximated by a Taylor series, 
including only first two terms, 
 
    )(')()()( 000 xyxxxyxy  .   (1.5.6) 
 
This method seems to be easy, but it actually works. However, the accuracy of the solution is 
doubtful. Denoting the size of the step )( 0xx   by h , Eq.(1.5.6) can be written as an equality, 
 
    000000 ))(,()()( hfyxyxhfxyhxy   , (1.5.7) 
 
where, )( 00 xyy  and ),( 000 yxff  . This is know as the (simple) Euler method, and it 
allows to move the solution along, one step at a time, as indicated in Figure 1.5.1. A typical 
implementation is to derive the total integration region into steps of size h , and to move the 
solution along one step at a time in an obvious way. To check the accuracy, the calculation 
can be repeated for a different step sizes and the results can be compared.  
 
There is a problem with the simple Euler method; the derivative at the beginning of the 
interval is assumed to be constant over the entire step. Note that, such asymmetric treatments 
always lead to low accuracy in the solution. Using a median value of the derivative, for 
instance a halfway through the step, would yield a solution with a higher accuracy. The 
question now is how to evaluate the derivative at the midpoint, when the derivative is itself a 
function of y ? 
 
Let’s use the Euler’s method to guess the solution at the midpoint, 2/0 hxxmid  . Namely, 
 

    0000 2
'

2
)( fhyyhyxy mid  ,   (1.5.8) 
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where it’s been again associated the derivative of y  with the funciton f . Utilizing this 
expression for )( midxy , one can evaluate the derivative at the midpoint, ),( midmid yxf . In 
addition, approximating the derivative over the entire interval one obtains, 
 

    0000 2
'

2
)( fhyyhyxy mid  .   (1.5.9) 

 
This is the modified Euler’s method, and it has an interesting geometrical interpretation. (See 
Figure 1.5.2). While Euler’s method corresponds to drawing a straight line through (xo,yo), 
but with (approximately) the derivative at the midpoint of the interval. In other words, this 
method considers a simple approximation to the derivative at the midpoint, 
 

    h
xyhxyxyyxf midmidmid

)()(
)('),( 00 
  . (1.5.10) 

 
Using Euler’s method for an approximate midy , the modified Euler method quickly follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.5.2: The modified Euler method. 
 
 
Yet another variation of Euler’s method is possible if solution is attempted using a mean 
value of the derivative. (See Figure 1.5.3). That is, the Euler’s equation is used to guess at 

)( 0 hxy  , and is utilized to evaluate the derivative at the end of the interval. This derivative 
is averaged with the “known” derivative at the begining of the interval, and this mean 
derivative is used to advance the solution. The improved Euler method is thus given as, 
 

    2
),(

)()( 0000
00

hfyhxffxyhxy 
 . (1.5.11) 
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Figure 1.5.3: The improved Euler method. 
 
 
1.5.2  Runge-Kutta Methods 
 
There is a large freedom in writing down algorithms for integrating differential equations and  
each has its own peculiarities and advantages. Runge-Kutta algorithms are widely used,  
which present varying orders of accuracy. A second-order version is derived here to give the 
spirit of the approach and then the equations for the third- and commonly used fourth-order 
methods can be simply stated. To derive a second-order Runge-Kutta algorithm, f  in the 
integral of, 
 

    




1

),(1

n

n

x

x
nn dxyxfyy ,    (1.5.12) 

 
is approximated by its Taylor series expansion about the mid-point of the interval. Thus,  
 
    )(),( 3

2/12/11 hOyxhfyy nnnn   ,  (1.5.13) 
 
where the error aries from the quadratic term in the Taylor series, as the linear term integrates 
to zero. Although, the equation seems to impose that the value of 2/1ny  in the right hand side 
should be known, this is not true. Since the error term is already of the order of )( 3hO , an 
approximation to 1ny  whose error is )( 2hO  is already sufficient. This is provided by the 
simple Euler’s method, )(),( 2

1 hOyxhfyy nnnn  . Thus, if k is defined to be an 
intermediate approximation to twice the difference between 2/1ny  and ny , the following two-
step procedure gives 1ny  in terms of ny , 
 
    );,( nn yxhfk       (1.5.14.a) 
    )()2/,2/( 3

1 hOkyhxhfyy nnnn  .  (1.5.14.b) 
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This is the second-order Runge-Kutta algorithm. It embodies the general idea of substituting 
approximations for the values of y  into the right-hand side of implicit expessions involving 
f . It is as accurate as Taylor series or implicit methods, but places no special constraints on 
f , such as easy differentiability or linearity in y . It also uses the value of y  at only one 

previous point, in contrast to the multipoint methods discussed above. However, Eq.(1.5.14) 
requires the evaluation of  f  twice for each step along the lattice. Runge-Kutta schemes of 
higher-order can be derived in a relatively straightforward way. Any quadrature formula can 
be used to approximate the integral (1.5.12) by a finite sum of f  values. For example, 
Simpson’s rule yields, (notation change 2/1)2/(  nfhxf ) 
 

   )(),(),(4),(
6

5
112/12/11 hOyxfyxfyxfhyy nnnnnnnn   . (1.5.15) 

 
Schemes for generating succesive approximations to the y ’s appearing in the right-hand side 
of a commensurate accuracy completes the algorithms. A third-order algorithm with a local 
error )( 4hO  is, 
 

    
);2,(
);2/,2/(

);,(

213

12

1

kkyhxhfk
kyhxhfk

yxhfk

nn

nn

nn






    

    )()4(
6
1 4

3211 hOkkkyy nn  .  (1.5.16) 

 
It is based on Eq.(1.5.15) and requires three evaluations of f  per step. A fourth-order 
algorithm, which requires f  to be evaluated four times for each integration step and has a 
local accuracy of  )( 5hO , has been found by experience to give the best balance between 
accuracy and computational effort. It can be written as follows, with the ik  as intermediate 
variables, 
 

);,(
);2/,2/(
);2/,2/(

);,(

34

23

12

1

kyhxhfk
kyhxhfk
kyhxhfk

yxhfk

nn

nn

nn

nn







    

 )()22(
6
1 5

43211 hOkkkkyy nn  .  (1.5.17) 
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1.5.3  Numerov Method 
 
There is a particular simple and efficient method for integrating second-order differential 
equations having the form of, 
 

    )()(2
2

2

xSyxk
dx

yd
 .    (1.5.18) 

 
To derive this method, commonly called the Numerov or Cowling’s method, it is begun by 
approximating the second derivative in Eq.(1.5.18) by the three-point difference formula*,  
 

    )(''''
12

''
2 4

2

2
11 hOyhy

h
yyy

nn
nnn 

  ,  (1.5.19) 

 
 
where it has been written out explicitly that the )( 2hO  “error” term, which is derived easily 
from the Taylor expansion. From the differential equation itself, it is had, 
 

    xxn Syk
dx
dy


 )('''' 2

2

2

 

             2
1

22
1

2 )()(2)(
h

ykykyk nnn  
  

     )(
2 2

2
11 hO

h
SSS nnn 


  .   (1.5.20) 

 
When this is substituted into Eq.(1.4.19), it can be written, after some rearrangement that, 
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Solving this linear equation for either 1ny  or 1ny  then provides a recursion relation for 

integrating either forward or backward in x, with a local error )( 6hO . It should be noted that 
this is one order higher in accuracy according to the fourth-order Runge-Kutta method 
Eq.(1.5.17), which might be used to integrate the problem as two coupled first-order 
equations. The Numerov scheme is also more efficient, as each step requires the computation 
of 2k  and S  at only the lattice points. 
 
__________________________ 
 

* The three-point difference formula is given as, )()()(2)( 2
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1.6  Est3D 
 
Est3D (Electrostatics in three dimension) software package was written by Anderas 
Weichselbaum, Arnold Sommerfeld Center/Ludwig Maximilians Universitat, and further 
adapted and modified by Sefa Arslan for the structures that we are interested in. As a 
development environment, C++ programming language is used. References [9] and [10]  were 
utilized for this section. 
 
To obtain electrostatic potential landscapes, the solution of the Laplace's or Poisson's equation 
is needed and it is a well defined boundary value problem, requiring the discretization of 
space on a convenient grid. Relaxation techniques are usually used for these problems. 
Relaxation techniques provide efficient algorithms such as multi-grid, Jacobi, and Gauss-
Seidel iteration schemes.  
 
The three-dimensional numerical algorithm used in this program is adapted from the well-
known numerical relaxation technique for solution of the Poisson equation in 2D. Using the 
self-consistent iteration scheme all the charges in the system are calculated accurately to 
satisfy the desired boundary conditions. The program solves the Poisson’s equation self-
consistently with open boundary conditions by considering up to fourth order degree 
neighbour effects and gives the electron density and potential distributions. In three 
dimensions, however, due to the poor scaling with grid dimensions, better algorithms are 
desirable. 
 
 
1.6.1  Configuration of  Application 
 
In this section, configuration parameters of the Est3D application will be discussed. The 
program parameters are kept in two ways, via the environmental variables and the 
computation data file. Preparation of the data file will be discussed in Sec. 1.6.3, but 
here a general introduction will be given. 
 
 
Input File 
 
The sample which will be simulated has to be defined in est3.dat data file. The measurable 
quantities like the physical 
size of the system, computational grid size, amount of the charges, location of the gates and 
the voltage that are imposed on the boundaries, impurities and properties of the dielectric 
material should be defined at the input file. 
 
The variable SYS_PARAS in the data file defines the dimensions of the system. The format 
of the parameter is like following: 
 

 
SYS_PARAS = [  NX   NY   NZ   LX   fhY   fhZ  ] 

  
 



1.6 Est3D_________________________________________________________________14 
 
 
NX, NY and NZ stands for the dimensions of the computational grid in x-, y- and z-directions 
respectively. LX is the physical dimension of the system in x-direction. The grid spacing xh  
is calculated by )1( NXLX  at x, fhY and fhZ adjust the grid size such that and yh and zh  
are calculated by yh = (fhY. xh )  and  zh = (fhZ. xh ) respectively. 
 
 

 
Figure 1.6.1: Schematic representation of the structure defined by the program in grid 
dimensions. 

 
 
Non-geometric surfaces, etching or gating patterns which are defined via the individual 
coordinates of each grid points on the pattern profile has to be defined in a *.srf file, like 
gates.srf. The pattern file and the patterns included by the file should be set in the data file via 
BDR_FILE variable, that fixes the boundary conditions. The format of the variable is as 
follows: 
 

BDR_FILE = { 
pattern_file     SX  SY  SZ   bXY   bZ 
pattern_name VX  VY  VZ  ‘type’  ‘value’ 
} 

 
Here SX, SY, SZ represents the starting point for the shifting of coordinates, if necessary, and 
bXY, bZ represents the value of shifting. VX, VY and VZ indicates where the patterns will be 
placed, on which plane, xy xz or yz, and on which layer of the plane. The ’value’ parameter is 
assigned to each grid point for the given pattern. It is possible to use as many patterns as  
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needed. The given pattern may be used for different purposes -etching, gating etc.- and can 
represents different type of structures. The list of ’type’ identifiers is as following: 
 
C : Point charge 
 
C2 : 2D charge distribution 
 
D : Dielectric boundary 
 
E : Etched boundary 
 
V : Boundary with given voltage. 
 
VO- : Boundary with given negative voltage 
 
 
ISLANDS variable defines the geometric structures. The format is as following: 
 

ISLANDS  =  {  ‘structure name’  I1  J1  K1  I2  J2  K2  ‘type’  value  } 
 
Here I1, J1 and K1 indicate the starting points of the structure while I2, J2, and K2 are the end 
points in x-, y-, z-directions respectively. If the size of the structure is only 1 grid point in the 
given plane, it is enough to use ”~” character for the end point coordinate. The same 
considerations are valid for the ’type’ and ’value’ parameters discussed above. It is possible to 
use many structures to simulate nearly real systems.  
 
 
An example data file for a system that was used in our work (it will be looked in detail in the 
following section): 
 
 
 %SETUP DIMENSIONS 
  
   %    NX0  NY0 NZ0  LX        fhY    fhZ 
 SYS_PARAS  =  [  128   128   137   2.0E-6   1.0   0.4762  ] 
 
 BDR_FILE  =  { 
 %      FILE NAME  -- SHIFT_X, Y, Z  -  bXY  -  bZ ---------------------------------- 
  ‘gates.srf’                      0   0   0       6         6      ‘file’  %  user structure 
 
 %    VARNAME – SHIFT_X, Y, Z - [VQ]  VALUE   -   DESCRIPTION -------- 
  ‘qpc’           0   0   0    68  ‘V’    ‘disa gate’    % gate 
 
 ISLANDS = { 
 % VARNAME  ----   I1   J1   K1  --  I2    J2    K2  --  [VQ]  -  VALUE ------------ 
  ‘dielec’            3    3     3        124 124  92          ‘D’         12.0 
  ‘surf’               6    6     91      121 121   ~           ‘VO-‘      -0.75 
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  ‘donors1’         6    6     69      121 121   ~           ‘C2’       2.50E15 
  ‘donors2’         6    6     86      121 121   ~           ‘C2’       1.70E16 
  ‘2DEG’           6     6     53      121 121   ~           ‘VO-‘      0.0 
 } 
 
 
1.6.2  Output of the Program 
 
When the execution of the program ends, it produces an output file which has the name 
V00.mat. All the information including the voltage and charge distributions on the grid points 
is effused as binary. The data has the Matlab format, so the output files can be anaylzed by 
matlab functions.  
 
 
1.6.3 Explanation of The Est3D Input File  
 
In this part, preparation of the input file of the quantum point contact, introduced at Figure 
1.7.2, will be described step by step. 
 
The system of interest consists of several components and it is defined in section 1.7.1.  
 
The dielectric coefficient of AlGaAs and GaAs are approximately the same, ε = 12.4 ε0, 
therefore these two set of layers may be treated as they are a single thick layer with 660 nm of 
thickness. The thickness of upper and lower parts are 285 nm and 375 nm respectively. The 
two-dimensional electron system is formed at the interface of AlGaAs and GaAs. The 2DEG 
thickness will be assumed as one computational layer (dz), 7.5 nm. Two donor (δ) layers 
embedded into AlGaAs layer at 37.5 nm and 180 nm depth from the surface respectively. The  
 
 
distance between the lower donor layer and the 2DEG layer is 120 nm. The length of the 
material in x− and y− directions are the same and equal to 1500 nm. 
 
The real and the computational dimensions of the system should be provided by 
SYS_PARAS variable in the input file. For our sample simulation, the described construction 
will be transfered into 128x128x32 (x,y,z) computational grid. Longer execution time and 
larger physical memory are required to make computation with larger grid sizes with Est3D. 
The fields for grid sizes NX, NY, NZ are integer type entries. The physical lengths Lx and Lz 
are the real size of the construction in unit of meters. 
 
The geometric structure, the layers and the properties of the layers (donors, 2DEG, dielectric 
layers), is defined by ISLANDS variable in the input file.  As stated before, dielectric 
material is consisting of upper and lower parts and since the electrical properties of these parts 
are relatively similar, they may be treated as a single material with dielectric constant ε = 12.0 
ε0. The total thickness of the component equals to 88 computational grids. Starting from the 
bottom, 0th layer, the component placed between 3rd and 91th layers. For computational 
reasons, a distance with three-layer thickness should be inserted between the dielectric and the  
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border. Due to the same reasons x and y dimensions of the component is defined between 3rd 
and 124th grid points at xy plane. The type identifier for dielectric is D as stated in page 14.  
 
Approximately 10% of donated electrons by the ionized donors escapes to the surface and 
induce a homogeneous voltage distribution about 0.75 V (for the given amount of donors). To 
represent this situation in the simulation, a metallic surface layer is placed just one layer 
below the top layer of the dielectric grid. For the stability concerns of the simulation results,  
three grid points distance is kept between the dielectric material and the metallic surface at xy 
plane. Since the surface is metallic it can keep only electrons. The type identifier for this layer 
is V0-.  
 
The donors are placed at the 69th. and 89th. layers. Donors are assumed to be homogeneously 
distributed over one computational unit thickness of layer. The donor layers can be treated as 
two dimensional charge distributions with the density of 2.5 x 1015 m-2 and 1.7 x 1016 m-2 
respectively from lower donor layer to upper one. The type identifier for this layer is C2 (page 
14). 
 
To use non-geometric patterns as a component, the coordinate information of each point in the 
pattern should be provided in a pattern input file. For a system which has 128x128 grid points 
at its xy plane, the number of the points to be proceeded is 16384. It is not possible to handle 
that amount of grid points by hand. So, we use a program that creates a data file for the 
pattern. It defines the etching or gating pattern via individual coordinates of each grid point on 
the pattern profile. The pattern profile is needed to be defined in a *.srf file and it is identified 
in the input file via BDR_FILE variable.  
 
A full input file that is used in our work can be found in Appendix A. 
 
 
1.7  A Specific Example: Quantum Point Contact (QPC) 
 
A quantum point contact (QPC) is simply a very narrow (a width comparable to the electronic 
wavelength; nano- to micrometer) constriction between two electrically conducting regions in 
very small scale in which quantum mechanical effects can be observed. QPCs can be created 
on a two-dimensional electron gas (2DEG) via inducing narrow contsrictions by depositing 
gates on the surface of the crystal. QPCs were reported firstly by Van Wees et al. and 
Wharam et al. in 1988. References [9, 11, 12, 18] were utilized in this section. 
 
A quantum point contact presents a resistance to the motion of electrons in transverse 
direction. The current that is flowing through the contact is given by GVI  , where V  is the 
potantial that is applied accross the contact and G  is the conductance of the contact. This 
formula is similar to the Ohm’s law for macroscopic resistors and the conductance G  here 
can be thought as the quantum mechanical version of the conductivity   for macroscopic 
resistors. As can be guessed from the name of the QPCs, quantum mechanical behavior of the 
nature and of the electrons should be taken into account, because of the small sizes. QPCs 
creates a potential barrier perpendicular to the current direction and it quantizes the energy 
levels. That is, the electrons which are at only the certain energy states can pass through the 
energy barrier created by the QPC (see Figure 1.7.1) and only these electrons can contribute  
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to the current. Thus, at low temperatures and voltages, the electrons that contribute to the 
current can have only certain values of wavelength, energy and momentum which are also 
called the Fermi wavelength, energy and momentum respectively. Therefore, the electrons are 
considered to be plane waves before they reach to the QPC and quantum mechanical solutions 
are carried out and transmission and reflection coefficients are calculated. We have used the 
results of these calculations in our work.  
 
 

a) 

                                       
b) 

                                         
 

Figure 1.7.1: a) Tunneling through a potential barrier, say created by a QPC. The 
region I represents the region that the electron is in, before it reaches the QPC (the 
potential barrier), The region II shows the potential barrier created by the QPC. V is 
the potential energy of the barrier. b) Tunneling through two potential barriers, say 
created by double QPC. The region I represents the region that the electron is in, 
before it reaches the QPC, II and III are the barriers. III shows the region between the 
QPCs. 

 
 
The electron wave can only pass through the constriction if it interferes constructively which 
for a given size of constriction only happens for a certain number of modes N. The induced 
current is given by the product of the electron velocity and the electron density. As a result, 
each state contributes the same amount he /2  per spin direction to the total conductance,  
 
    QNGG  .      (1.7.1) 
 

QG  is said to be the conductance quantum and it is given by, 
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    heGQ /2 2  ,      (1.7.2) 
 
where e  is the elctron charge and h  is the Planck’s constant. The integer number N  is 
determined by the width of the point. Thus, the total conductance is quantized and does not 
take on arbitrary values. As a function of the width (or gate voltage in the case of 
GaAs/AlGaAs heterostructure devices) of the QPC, the conductance shows a staircase 
behaviour (see Figure 2.2.2) as more and more modes (or channels) contribute to the electron 
transport. The step-height is given by Eq.(1.7.2).  
 
For QPCs, the common starting point for the investigation of the structures is the degenerate 
two-dimensional electron gas (2DEG), present at the interface between GaAs and AlGaAs 
layers in a heterostructure (see Figure 1.7.2). The electrons are confined in the GaAs by a 
potential well at the interface with the AlGaAs, which results from the repulsive barrier due to 
the conduction band ofset between the two semiconductors, and from the attractive 
electrostatic potential due to the positively charged ionized donors in the AlGaAs layer. The 
electrons thus are confined in a direction normal to the interface, but they are free to move 
along the interface. This implies that a two-dimensional subband is associated with each 
discrete confinement level in the well. Usually, the potential well is quite narrow (about 10 
nm) that only a single two-dimensional subband is occupied, and the density of states is 
strictly two-dimensional. At low temperatures, these states are occupied up to the Fermi 
energy, EF. Additional confinement occurs in a lateral direction if a narrow channel is defined 
electrostatically in the 2DEG. This leads to the formation of one-dimensional subbands, 
characterized by free motion in a single direction. 
 
 
1.7.1  Gate Defined Quantum Point Contact 
 
Point contacts in metals act like small conducting orifices in a thin insulating layer, separating 
bulk metallic conductors (with a mean free path l much larger than the size of the orifice). 
Actual point contacts usually are fabricated by pressing a metal needle on a metallic single  
crystal, followed by spot-welding. Point contacts in bulk doped semiconductors are fabricated 
by pressing two wedge-shaped specimens close together. Point contacts in a 2DEG cannot be 
fabricated by the same method, since the electron gas is confined at the GaAs-AlGaAs 
interface in the sample interior. The point contacts used in our studies are defined 
electrostatically by means of a gate on top of the heterostructure. In this way, short and 
narrow constrictions (QPCs of variable width comparable to the Fermi wavelength) in the 
2DEG can be defined. There are another techniques that can be used to define constrictions of 
fixed width, such as etching. [9, 11] 
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Figure 1.7.2: The GaAs-AlGaAs hetero-structure doped by silicon with 
1500x1500x156 nm (x,y,z). The 2DES, donated by minus sings, is realized at 285 nm 
depth from the surface. The metallic gates are located at the surface with W = 562.5 
nm separation. At zero bias, the electron density is determined by the number of 
donors. Charge distributions at different layers. 

 
 
We simulated a hetero-structure which is shown in Figure 1.7.2 and for single and double 
QPC, the electron density profiles are calculated for different bias voltages. The system that 
we are interested in consists of several components, starting from the bottom, the substrate 
layer, 375 nm layer of GaAs growth over the substrate, an interface layer between GaAs and 
the upper AlGaAs layers, that is at 375 nm from the bottom or 285 nm from the surface, there 
is a 2DEG layer, two donor (δ) layers embedded into AlGaAs layer at 37.5 nm and 180 nm 
depth from the surface respectively. The density of charge of the upper donor layer is 1.7 x 
1016 m-2 and the other donor layer has a 2.5 x 1015 m-2 charge density. The geometry we chose 
for the gates is a simple rectangle which has a width 500 nm and the distance between the 
gates is 562.5 nm. We used the same geometry and sizes for all QPCs here (single and 
double) as can be seen in the Figures 1.7.3 - 1.7.8. In Figures 1.7.3 - 1.7.8, the cross-sections 
of the electron density profiles and the potential distributions at the 2DEG for different gate 
voltages are shown. With increasing gate voltage, the charges under the gates are repulsed and 
depopulation of charges is observed under the gates. As can be seen from lower (b) panels of 
the Figures 1.7.3 – 1.7.8 which are for the potential distrubiton at the 2DEG, gate voltages 
creates potential wells and the charges are accumulated to these regions that has lower 
voltages.  
 
The simulations will not go deeper, but further information about the gate defined QPCs can 
be found in the litarature and Refs. [9, 11]. 
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a) 

 
b) 
 

  
    
Figure 1.7.3: Simulation results of (a) the electron density distribution and (b) the potential 
distribution on the 2DEG for a single QPC. -1.0 Volt potential was applied to the gates; V1 
and V2. The distance W between the gates is 562.5 nm. 
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  a) 

 
b) 

 
 
Figure 1.7.4: Simulation results of (a) the electron density distribution and (b) the potential 
distribution on the 2DEG for a single QPC. -1.5 Volt potential was applied to the gates; V1 
and V2. The distance W between the gates is 562.5 nm. 
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a) 

 
b) 

 
Figure 1.7.5: Simulation results of (a) the electron density distribution and (b) the potential 
distribution on the 2DEG for a single QPC. -2.0 Volt potential was applied to the gates; V1 
and V2. The distance W between the gates is 562.5 nm. 
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a) 

 
b) 

 
Figure 1.7.6: Simulation results of (a) the electron density distribution and (b) the potential 
distribution on the 2DEG for double QPC. -1.0 Volt potential was applied to the gates; V1, V2, 
V3 and V4. The distance W between the gates is 562.5 nm. 
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a) 

 
b) 

 
Figure 1.7.7: Simulation results of (a) the electron density distribution and (b) the potential 
distribution on the 2DEG for double QPC. -1.5 Volt potential was applied to the gates; V1, V2, 
V3 and V4. The distance W between the gates is 562.5 nm. 
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a) 

 
b) 

 
Figure 1.7.8: Simulation results of (a) the electron density distribution and (b) the potential 
distribution on the 2DEG for double QPC. -2.0 Volt potential was applied to the gates; V1, V2, 
V3 and V4. The distance W between the gates is 562.5 nm. 
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Chapter 2  
 
Theoretical Background on Magnetism 
 
 
 
2.1  Hall Effect 
 
Edwin H. Hall, who was a 24-year-old graduate student, conducted an experiment and tried to 
determine whether the force experienced by a current carrying wire in a magnetic field was 
exerted on the whole wire or only on the moving electrons in it. Hall thought that if the 
current of in a fixed conductor is attracted by a magnet, the current should be drawn to one 
side of the wire and therefore the resistance experienced should be increased. He could not 
detect this extra resistance. However, he thought that the magnet must tend to deflect the 
current anyway, but it cannot do so. In this case he thought that there should be a state of 
stress in the conductor, the electricity pressing, toward one side of the wire. This stress should 
be a transverse voltage, which is known to be Hall voltage after E. Hall. We utilized Ref. [13, 
14, 15] for this section. 
 
The experiment is depicted in Figure 1. An electric field xE  is applied to a conductor 
extending in the x-direction and a current density xj  flows through it. A magnetic field B


 

points in the z-direction. As a result of the Lorentz force, Bve


 , the electrons tend to turn 
in to negative y-direction. However, the electrons cannot move much in the y-direction. When 
the electrons come closer to the side of the conductor, because of the potential difference 
occured between the sides, an electric field builds up in the y-direction that opposes the 
motion of the electrons. In equilibrium, this transverse field, Hall field, yE  will balance the 
Lorentz force, and current will flow only in the x-direction. 
 

            
 
Figure 2.1.1: Schematic view of the Hall experiment. 
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There are two quantities of interest. One of them is the magnetoresistance (or transverse 
magnetoresistance. There is also a longitudinal magnetoresistance measured with the field 
paralel to the current.), 

    
x

x

j
EB )( .      (2.1.1) 

 
This is field independent. The other one is the size of the Hall field, yE . It balances the 
Lorentz force, so it is proportional both to the applied field B, and to the current in the 
conductor xj . 
 
Hence, a quantity that is known as the Hall coefficient is defined, 
 

    Bj
E

R
x

y
H  .      (2.1.2) 

 
Since the Hall field is in the negatice y-direction (Figure 2.1.1), HR  is negative. If the charge 
carriers were positive, then the sign of their x-velocity would be reversed, and therefore the 
Lorentz force would be unchanged. As a consequence the Hall field would determine the sign 
of the charge carriers. For Hall’s original experiment, the sign of the charge carriers are 
negative as determined by Thomson. However, the Hall effect also showed that in some 
substances (especially p-type semiconductors), it is more appropriate to think of the current as 
moving positive ‘holes’ rather than negative electrons. There is a confusion usually occurs 
with the Hall effect that when holes move to the right is actually means that electrons move to 
the left or visa versa. So one expects the sign of the Hall coefficient is the same for both 
electrons and holes. This confusion can only be resolved by modern quantum mechanical 
theory of transport in solids.  
 
To calculate the Hall coefficient and the magnetoresistance, the current densities xj  and yj  
should be found firstly. The force on each electron is, 
 
    )( BvEef


 .     (2.1.3) 

 
And the momentum conservation equation for an electron is given as*, 
 

    )()( tfp
dt

tpd 


 ,     (2.1.4) 

 
where the second term is frictional damping term due to electron’s collisions. 
Combining Eqs.(2.1.3) and (2.1.4) gives, 
 

    
pB

m
pE

dt
tpd 

 )()(
.    (2.1.5) 

____________________________ 
* A derivation of this equation can be found in Chp.1 of Ref.[15] 
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For a steady state current, there is an independence of time and therefore the following 
equations can be written for xp  and yp  
 

    
 x

ycx
ppEe 


0     (2.1.6.a) 

    


 y
xcy

p
pEe 


0 ,    (2.1.6.b) 

 

where m
eB

c  . 

 
To be able to get the current densities xj  and yj , Eq.(2.1.6) is multiplied by mne /  and 
remembering vnej 

 , current density components are introduced, 
 

 cxE 0 xy jj       (2.1.7.a) 
     cyE 0 yx jj  ,    (2.1.7.b) 
 

where 0  is the Drude model DC conductivity in the absence of magnetic field. The Hall 
field yE  is determined when the Hall potential is maximum, that is when Lorentz force 
balance is reached, that is the transverse current yj  is zero, hence setting yj  to zero in the 
Eq.(2.1.7.b) gives, 
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Therefore the Hall coefficient, Eq.(2.1.2), is, 

 

    ne
RH

1
 .      (2.1.9) 

 
As it can be seen, the Hall coefficient does not depend on any parameter of the metal, except 
only the density of charge carriers. Therefore, a measurement of the Hall constant provides us 
the knowledge of charge carrier density. However, there is a problem about getting the 
knowledge of n  from the measured Hall coefficients; they depend on magnetic field in 
general and also on temperature and the sample. This result seems unexpected, because the 
relaxation time   does depend on the temperature and on the sample, and it does not appear 
in Eq.(2.1.9). At very low temperatures and  high fields and if the pureness of the sample is 
high, the measured Hall coefficients approach a limiting value. This limiting value is the 
simple Drude result; Eq.(2.1.9). 
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2.2  Quantum Hall Effect 
 

According to the Drude theory, the Hall resistivity decreases in inversely proportional to the 
electron density and it is independent of relaxation time,  , in a weak magnetic field, 

 

    
 2en

m

e

e
xx  ,      (2.2.1.a) 

    en
B

e
xy  ,      (2.2.1.b) 

 
where em  is the electron mass, en  is the number of electrons and   is the relaxation time 
which is defined as the mean time passed between two succesive collisions of an electron. 
However, the behavior in a strong magnetic field is quite different. In 1978, Wakabayashi and 
Kawaji conducted an experiment and they measured conductivity components, xx  and xy  
of a Si-MOS sample. They found that there are regions where the diagonal conductivity 
becomes very small and the Hall conductivity (the inverse of xy  in the Drude theory) 
approaches Bene . In Figure 2.2.1, it can be seen that the results of an experiment by 
Wakabayashi and Kawaji. [9, 16, 17, 22] 

 
 
 

                            
Figure 2.2.1: The Hall and longitudinal conductivities measured by Wakabayashi and 
Kawaji. [11] 

 
 

According to Eq.(2.2.1.b), the Hall resistance is expected to change linearly with the magnetic 
field B . However, in 1980, von Klitzing et al. made very accurate measurements for 
resistivity and he found that, at high magnetic fields and low temperatures (about 1 K), the  
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Hall resistance did not change linearly with the field. He saw in the plot (Fig.2.2.2) a series of 
“stair steps” like plateaus. In these constant Hall plataue regions in Hall resistivity, the 
longitudinal resistivity becomes so small that it vanishes almost. They also showed that the 
Hall resistivity in the plataue region is given exactly by 2eh  devided by an integer, that is 
the Hall conductivity xy  in the plataue region is quantized into integer multiples of  he2 . 
Hence, this phenomenon was called the integer quantum Hall effect.  
 
 
 
 
 
   
  
  
   
  
  
  
   
  
  
   
  
 

Figure 2.2.2: There is shown the integer quantum Hall effect in a GaAs-GaAlAs 
heterojunction, recorded at 30 mK. The straight black line shows the expected 
classical behavior. [22] 

 
 
 

In two dimension, there are circular paths in which (classical) electrons are forced to move by 
the field on them. Quantum mechanical nature prevents the electron orbits from overlapping. 
As the field increases, the orbital radius decreases, permitting more orbits to bunch together 
on one side of the material. The changes in orbital motion occur suddenly, corresponding to 
the plataues, because of the quantization of the orbital motion of the electrons, that is only 
certain orbits being allowed. The energy levels of these quantized orbitals take on discrete 
values, called Landau levels, 

 
    )2/1(  nE cn  ,     (2.2.2) 
 

where ωc = eB/m is the cyclotron frequency. For strong magnetic fields, each Landau level is 
highly degenerate (i.e. there are many single particle states which have the same energy En). 
For strong magnetic fields, each Landau level can have so many states that all of the free 
electrons in the system sit in only a few Landau levels; it is in the regime that the quantum 
Hall effect is observed.  
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F
Figure 2.2.3: In the absence of magnetic field the density of states in 2D is constant as 
a function of energy, but in field the available states clump into Landau levels (LL) 
separated by the cyclotron energy, with regions of energy between the LLs where 
there are no allowed states. As the magnetic field is swept the LLs move relative to the 
Fermi energy. When the Fermi energy lies in a gap between LLs electrons can not 
move to new states and so there is no scattering. Thus the transport is dissipationless 
and the resistance falls to zero. [22] 

 
The quantized Hall resistance 2eh  is known to a precision of less than 1 part in 1010, so the 
quantized Hall effect is used for a new standard for resistance. [16] 
 
 
2.3  Edge States 
 
In a magnetic field, the electrodynamics of a two-dimensional system is different from the 
three-dimensional case. In the three-dimensional case, the linearly varying wiving potential 
inside the sample is produced by a surface charge at the sample edges. So, in a magnetic field 
the surface charge which gives rise to the Hall voltage cancels the Lorentz force on a 
homogeneous current density in the sample. In contrast, in a two-dimensional system neither 
a surface charge nor a redistribution of the charge density in the bulk of the 2DEG can 
produce a linearily varying potential across the system. A nonlinear Hall field has therefore to 
exist in a two-dimensional sample. [18, 19, 20] 
 
The edge of a system can be thought as a confining potential and the details of the electron 
state depend on the form of the potential. The state of the electron can be found from the 
solution of the Schrödinger equation, where the boundary conditions are fixed by the 
confinement potential. In the presence of an external magnetic field, common results show  
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that the energy of an electron state increases as the state approaches the edge. The motion of 
an electron at the edge can be imagined as if in classical mechanics as a skipping orbit along 
the edge. Figure 2.3.1 shows these classical trajectories of an electron moving in a magnetic 
field at the edge of a sample.  
 
 

 
Figure 2.3.1: Classical trajectories (skipping orbits)  
of electrons moving along the edge of a sample in magnetic field. 

 
 
The Hamiltonian of a 2DEG in a magnetic field perpendicular to the 2DEG is, 
 

      ),()(
2
1 22 yxVpeBp
m

H yyx  ,  (2.3.1) 

 
given the vector potential )0,0,( yzBA 


, in Landau gauge. The hamiltonian is not separable 

for an arbitrary potential ),( yxV . If ),( yxV  depends only on the y coordinate the 
Hamiltonian is separable with the wavefunction, 
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hence we get the eigenvalue problem , 
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where meBc /  is the cyclotron frequency, m is the effective mass of the electron and 

2
0 ckly  , eBlc /  is the magnetic length. The parameter 0y  gives the center of the 

cyclotron orbit. For a vanishing potential 0)( yV , the eigenfunctions )( ynk  are the 
harmonic oscillator functions, 
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22
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where Hn is the Hermite polynomials, N  is the normalization and the energy eigenvalues are 
the ones for the harmonic oscillator which are, 
 

 



2.4 Local Ohm’s Law_______________________________________________________34 
 
 

 





 

2
1nE cn  .    (2.3.5) 

        
                  a) 

b)                   

            
Figure 2.3.2: a) Electron motion in skipping  
orbits at the edge states in 2DEG b) energy  
spectrum of a 2DEG in a magnetic field with  
confining potentials at the edges, y1 and y2. 

 
 
At the edges, for a non-vanishing potential, the energy eigenvalues increase near the edges 
and become k dependent. The energy levels for some Landau quantum numbers as a function 
of  0y  can be seen in Figure 2.3.2. These states which have a raised energy and cause electron 
motion along the edge are called “edge states”. In Figure 2.3.2, states can be observed beyond 
the sample edges defined by y1 and y2. In the classical picture of skipping orbits, the centre of 
the cyclotron orbit can be outside of the sample, and the same effect holds for the quantum-
mechanical picture.  However, in both cases, the centre of mass of the electrons at the edges 
stays inside the sample giving rise to an increase in carrier concentration near the edge of the 
sample.  
 
The current-carrying states belonging to one Landau quantum number at one edge are often 
called edge channels.  
 
 
2.4  Local Ohm’s Law 
 
To produce an electric current in a circuit, a potential difference is required. The potential 
induces an electric field that will force the charges to flow. Usually, the current density j


 is 

proportional to the force per unit charge, f


: 
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    fj


 ,      (2.4.1) 

 
where the proportionality factor   is the conductivity which depends on the material or the 
medium. [21] 
 
The force f


  is usually an electromagnetic force, so the Eq.(2.4.1) becomes, 

 
    )( BvEj


 .     (2.4.2) 

 
Since the velocity of the charges is too small, the second term on the right hand side of the 
Eq.(2.4.2) can be neglected. Hence, the equation becomes, 
 
    Ej


 .      (2.4.3) 

 
This is the Ohm’s law. Since any assumptions about the shape of the body is not required, 
Ohm’s law in this vector form is valid at any point of a body. Suppose an arbitrarily shaped 
body with current flowing through it, if we look at the coordinates (x,y,z) without changing 
the flow of the current, we find that the local current density and the local field strength obey 
the Eq.(2.4.3) given above locally, [21] 
 
    ),,(),,(),,( zyxEzyxzyxj
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There is no good reason that tells why j


 is always  parallel to E


. This means that for the 

most general case   is not a scalar quantity, but a tensor; ij  . Then the Ohm's law can be 
rewritten as following, 
 

    

















































z

y

x

zzzyzx

yzyyyx

xzxyxx

z

y

x

E
E
E

j
j
j





.   (2.4.4) 

 
This is the most general version of Ohm’s law. For anisotropic inhomogeneous materials the 
tensor have to be taken, and its components depend on the coordinates. In two dimension, the 
above equation reduces to, 
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Chapter 3  
 
Equilibration 
 
 
 
3.1 Equilibrium 
 
 
In chapter 1, we only obtained the potential and the electron density distributions in the case 
of electrostatic equilibrium. This means that all the electrons have effectively zero force 
acting on them. The next step is to include the effect of quantizing magnetic field and again 
obtain electrostatical equilibrium, which requires finding the vanishing total force also 
including the Hall effect. 
 
In the following, we present similar numerical results considering quantum point contacts and 
also the formation of skipping orbits (incompressible strips) without an external current. In 
other words, the number of forward moving electrons is equal to the number of backward 
moving electrons, hence the total current vanishes and equilibrium is established. 
 
In Figure 3.1.1, we show the spatial distribution of electron density (a) and potential 
distributions. The black regions (strips) corresponds to incompressible strips, i.e. skipping 
orbits. Here, the electrons within the incompressible strips reside in the second Landau level 
(n=1). It is common to describe dimensionless quantity, the filling factor  . It is given as, 
 

    
c

fE





2
 . 

 
Hence, this dimensionless number gives the occupation of Landau levels. One can imagine 
that the second orbital of the quantized cyclotron motion is occupied. It is straightforward to 
see that once the magnetic field is changed, the location of skipping orbits will also change as 
shown in the Figures in this section. Notice that on the right hand side of the Figure 3.1.1.a, 
the electrons are moving in positive y direction, meanwhile on the left hand side, electrons 
move on the opposite direction so that the total current is zero and our system is in 
equilibrium.  
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a) 

b)  

   
 
Figure 3.1.1: a) Electron density distribution and b) potential distribution for the 2DEG 
calculated for a single QPC. 
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a) 

 
b) 

 
 
Figure 3.1.2: a) Electron density distribution and b) potential distribution for the 2DEG 
calculated for a single QPC. 
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3.2 Non-equilibrium 
 
To disturb equilibrium, one imposes an external potential difference between x = 0 μm and    
x = 1.5 μm (x coordinate is given for just the figures in this section. In the figures in other 
sections, the coordinates are given different as you can notice). Therefore, finite number of 
electrons flow through the device. The current distribution is showed in Figure 3.2.1.b. It is 
apparent that the current traces the spatial distribution of incompressible strips. This is due to 
the fact that the longitudinal resistivity vanishes at incompressible strips. As we have seen 
previously, altering the magnetic field will change the current distribution also. This is seen in 
Figures 3.2.2 and 3.2.3. 
 
It is worth to note that the magnetic field does not change only the positions, but also the 
thicknesses of the current carrying edge states (channels). In any case, the left and right edge 
channels are decoupled due to the compressible bulk. Therefore, an equilibration process 
cannot take place. However, for certain magnetic fields, these channels can come to a close 
proximity where the bulk becomes incompressible. Then one could expect equilibration of left 
and right channels which we will be investigating in the next section. 
 
 
 
 

 
Figure 3.2.1: Electron density profile for a single QPC. B = 6 T. T = 5 mK. -1.5 Volt 
potential was applied to the gates.  
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Figure 3.2.2: Electron density profile for a double QPC. B = 6 T. T = 5 mK. -1.5 Volt 
potential was applied to the gates.  
 
  
 

 
Figure 3.2.3: Electron density profile for a double QPC. B = 7 T. T = 5 mK. -1.5 Volt 
potential was applied to the gates.  
 
 
3.3  Equilibration 
 
As discussed previously, magnetic fields can generate an equilibrated edge transport. 
Alternatively, one can change the geometry or applied gate potentials to generate an 
incompressible bulk where equilibration can take place. 
 
Here we show as a singular case, the formation of an incompressible bulk in Figure 3.3.1.a. 
The currents flowing from the bulk is equilibrated, hence one cannot distinguish between the 
left or the right incoming electrons. 
 
Investigation of equilibration depending on the given system parameters requires further 
numerical efforts. However, in Figure 3.3.2, we present schematically other possible 
configurations which we expect to have. 
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Figure 3.3.1: Electron density profile for a single QPC. B = 7 T. T = 5 mK. -1.5 Volt 
potential was applied to the gates.  
 
 
In Figure 3.3.2.a, the equilibration length, L, strongly depends on the applied gate voltage at a 
fixed magnetic field as can be seen from (b). Once voltages applied to the gates, the edge 
states are repelled from the quantum point contact and the equilibration length, L, can be 
reduced to as small as a single point. Meanwhile, increasing the magnetic field can either 
enlarge the strip widths or even create a bulk incompressible region where equilibration 
length can be as large as the sample length.  
 

 
Figure 3.3.2: Some possible configurations are given schematically. 
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Chapter 4  
 
Conclusion 
 
 
 
In this report of my final year project, we presented the preliminary version of our 
calculations where the Poisson’s equation is solved self-consistently. We have investigated a 
particular quantum device, namely the quantum point contact, which is defined by metalic 
gates deposited on the surface of the heterostructure. Also taking into account the gates, 
material properties of  the heterostructure, the electron gas and imposing relevant boundary 
conditions, we obtained the electron density and potential distribution profiles analyzing gate 
voltage dependency. In a further step, we included the effect of quantizing magnetic field 
starting from the classical Hall effect. We briefly discussed the skipping orbit picture where 
the current is carried. In the absence of an external current, i.e. in equilibrium, we show that 
the number of forward moving electrons is equal to the number of backward moving 
electrons. In the presence of external current, utilizing the local Ohm’s law, we investigated 
the current distribution near the quantum point contacts. In this non-equilibrium case, if the 
current carying channels are far apart, equilibrium is not restored. However, by manipulating 
the gate potentials and magnetic field, we onserved that equilibration can take place, where 
left incoming or right incoming electrons cannot be distinguished.  
 
In our future work, we plan to proceed with further calculations of equilibration conditions. In 
particular,  we plan to address the quantitative description of the equilibration length 
depending on the geometry, magnetic field and the heterostructure paramaters. 
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Appendix A 
 
Data Files 
 
 
 
In the following parts, the input files that were used for the calculations are given. 
 
 
A.1  Input File For Est3D 
 
Here I gave an input file used for a single quantum point contact.  -1.0 gate voltage applied to 
the gates. The name of the QPC is ‘qpc1’ whose pattern profile is defined in the 
corresponding gates.srf file.  
 
 

%% estatic parameter file 
%% NB! grid spacing needs to be the same in all dimensions in order 
%% for the equations used to hold (in given accuracy) 

 
%% SETUP DIMENSIONS 

 
             %  NX0   NY0   NZ0    LX       fhY    fhZ 

SYS_PARAS = [  128   128   137   2.0E-6   1.   0.4762 ] 
  

            %   LR    PL    PR    PC   trans 
VGATES    = [ -3.2  -2.5  -2.5  -4.5   -.75  ] 

  
BDR_FILE  = { 
% FILE NAME -- SHIFT_X,Y,Z - bXY - bZ -------------------------------- 
  'gates.srf'        0 0 0    6    6      'file' % user structure file 

  
% VARNAME -- SHIFT_X,  Y,  Z - [VQ]   VALUE - DESCRIPTION -- 
 'qpc1'            0   0  90   'V'    -1.0   'disa gate'  % gate 
} 

  
MOUT_DXY  = 0 
LOG_ZDIST = 1  % logarith. zdist for PISLk 

  
% ---------------------------------------------------------------------------------- % 
% ---------------------------------------------------------------------------------- % 

  
QDOT_LABEL = 'dot'; 
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% NB! *<label>[0-9][lrab] will be linked to *G[0-9]p[lrab] 

  
ISLANDS  = { 
%% VARNAME --- I1  J1  K1 -- I2  J2  K2 -- [VQ] - VALUE ----------- 
  'dielec'      3   3   3   124 124  92     'D'   12.0 
  'surf'        6   6  91   121 121   ~    'VO-'  -0.75 
  'donors1'     6   6  69   121 121   ~    'C2'   2.50E15 
  'donors2'     6   6  86   121 121   ~    'C2'   1.70E16 
  '2DEG'        6   6  53   121 121   ~    'VO-'   0.0 

                                                   
} 

 
% ------------------------------------------------------------------------------------ % 
 
QV_SERIES = [ 
 % VSET -- V2 --- V3 --- V4 -- --- N - % N = # intervals 
     0.   +0.1     0      0  ~     3   % 
 % ISL-IDX FLAGS[01] LOG -- V1 -- V2 - % - ------------------------------- 
  '2DEG'     ~  ~     Z      ~     ~   % 2DEG 
  'lo_surf'  ~  Q     Y      ~     ~   % shallow etched surface (pioda) 
  'tip'      X  ~     Y     V1    V2   % transition gate 
]; %% --------------------------------------------------------------------------------- 
 
QP_SERIES = [ 
 % ISL-IDX FLAGS[01] LOG [FILE:]VAR - SHIFT_[XYZ] - -------------- 
  '2DEG'     ~  ~     Z         ~     ~   ~   ~   % 2DEG 
  'surf2'    ~  Q     Y         ~     ~   ~   ~   % Qconst after shallow etch 
  'tip'      X  ~     Y     'tpos'  +10   0   0   % parabolic tip 
]; %% --------------------------------------------------------------------------------- 
 
% ------------------------------------------------------------------------------------ % 
% ------------------------------------------------------------------------------------ % 
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